CVE编号
CVE-2021-37647利用情况
暂无补丁情况
N/A披露时间
2021-08-13漏洞描述
TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.解决建议
建议您更新当前系统或软件至最新版,完成漏洞的修复。
参考链接 |
|
---|---|
https://github.com/tensorflow/tensorflow/commit/02cc160e29d20631de3859c665318... | |
https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c5x2-p679-95wc |
受影响软件情况
# | 类型 | 厂商 | 产品 | 版本 | 影响面 | ||||
1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
运行在以下环境 | |||||||||
应用 | tensorflow | * |
From (including) 2.3.0 |
Up to (excluding) 2.3.4 |
|||||
运行在以下环境 | |||||||||
应用 | tensorflow | * |
From (including) 2.4.0 |
Up to (excluding) 2.4.3 |
|||||
运行在以下环境 | |||||||||
应用 | tensorflow | 2.5.0 | - | ||||||
运行在以下环境 | |||||||||
应用 | tensorflow | 2.6.0 | - |
- 攻击路径 本地
- 攻击复杂度 低
- 权限要求 低
- 影响范围 未更改
- 用户交互 无
- 可用性 高
- 保密性 无
- 完整性 无
还没有评论,来说两句吧...